Review of BEC From a Biological Modeler's Perspective

Dr. Andrew Leising, NOAA-SWFSC-ESD NWRI Panel for SCCWRP's Coupled ROMS-BEC Model Technical Session 4: Technical Input January 18, 2024

Background

Why is NOAA-Fisheries is interested in BEC?

- Interest in
 - Subsurface O₂ measurements (fish)
 - pH (to a lesser degree)

Background

My Professional Experience:

- Have followed BEC model progress as a NOAA SWFSC representative since 2019
- Part of JGOFS HNLC program: origin of BEC: Moore et al. 2002 and 2004
- PISCES member: Early development of similar NEMURO model
- Led the CalCOFI State of the California Current report
- Co-lead the NOAA California Current Integrated Ecosystem Assessment (CCIEA) Status Report

Review of BEC

• Some parts of BEC work quite well:

- \circ Biogeochemistry of how O₂ and pH are handled is excellent
- Useful for academic purposes

• Concerns:

- Overall: Model is not ready for operational mode for management purposes
 - Model structure of the NPZ components
 - Secondary concerns:
 - Parameter values
 - Sensitivity analysis

The BEC Paradigm

Diatoms uptake these nutrients and grow

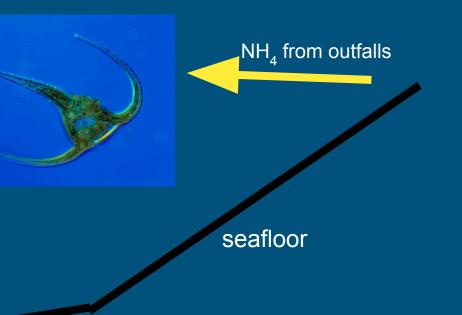
NO₃ from upwelling

The BEC Paradigm

- Diatoms are heavy (big silica shell) so they sink fairly fast when they die
- Fecal pellets also sink rapidly

The BEC Paradigm

Diatoms die, sink, use up oxygen and produce CO_2 at depth which causes a reduction in pH


seafloor

Important Missing Component of BEC:

Diatoms take up these nutrients, and grow

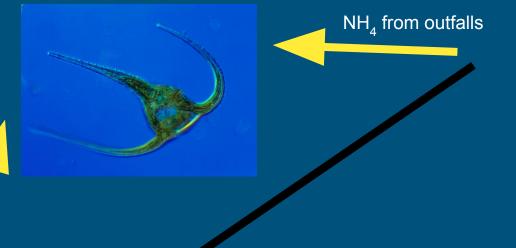
Dinoflagellates!!!

NO₃ from upwelling

Important Missing Component of BEC:

Dinoflagellates!!!

- Dinos are an important class of phytoplankton in the Bight (up to 40-60% of cell numbers, seasonally)
- Larger, but not as much total carbon as diatoms
- DON'T have a silica shell (so they don't sink like diatoms)
- Preferentially uptake NH₄ over NO₃ (possibly outcompete diatoms for this resource)
- Are likely "first responders" to sudden NH₄ increases (e.g., from a wastewater outfall)
- Can include important HAB species
- Have different growth and uptake dynamics than other categories of phytoplankton
- Explicitly excluded from BEC model



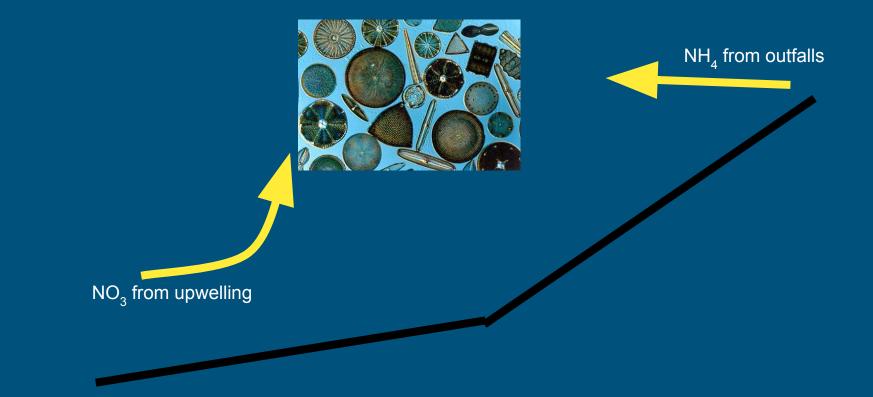
So, what if...?

Dinoflagellates are the ones responding to NH₄ inputs?

Diatoms uptake these nutrients and grow

NO₃ from upwelling

So, what if...?


Dinoflagellates are the ones responding to NH₄ inputs?


So, what if...?

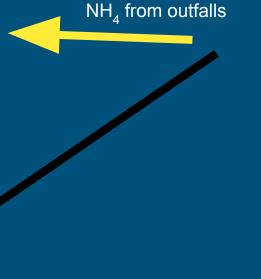
Dinoflagellates are the ones responding to NH₄ inputs?

NH₄ from outfalls

 NO_3 from upwelling

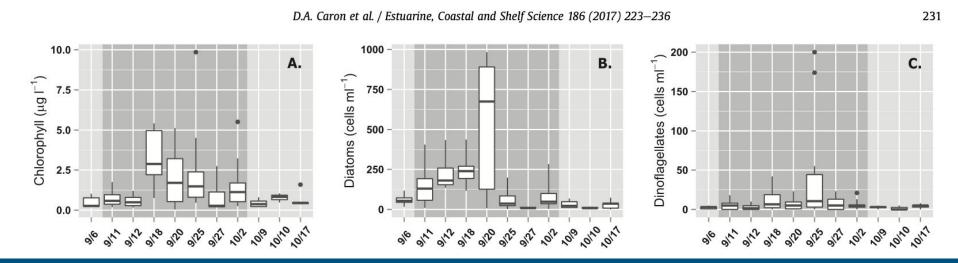
Careful review and sensitivity analysis of the sinking rate parameters

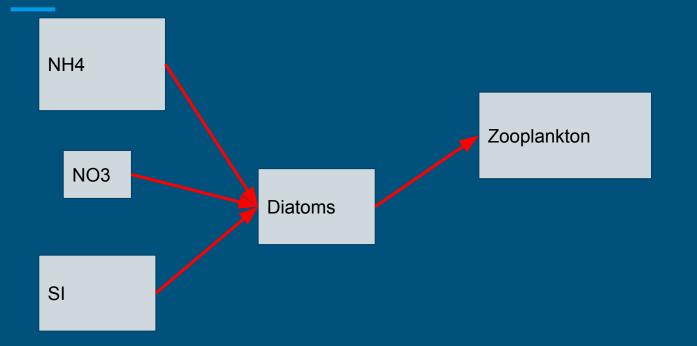
NOTE: The current BEC parameters being applied to the SCB for phytoplankton growth are the same as the early 2000's version used to model the Equatorial Pacific

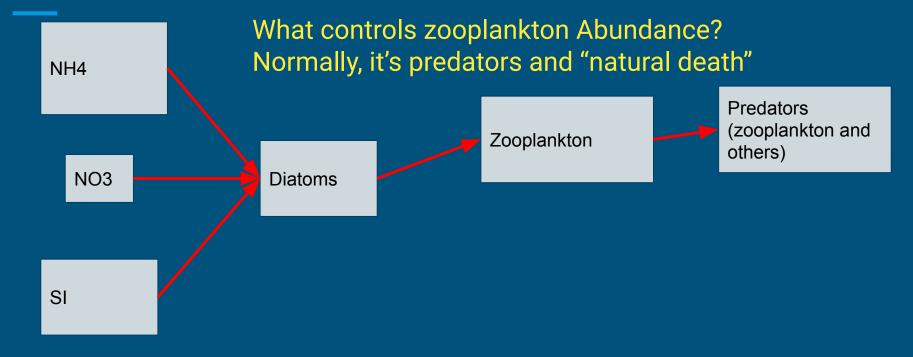


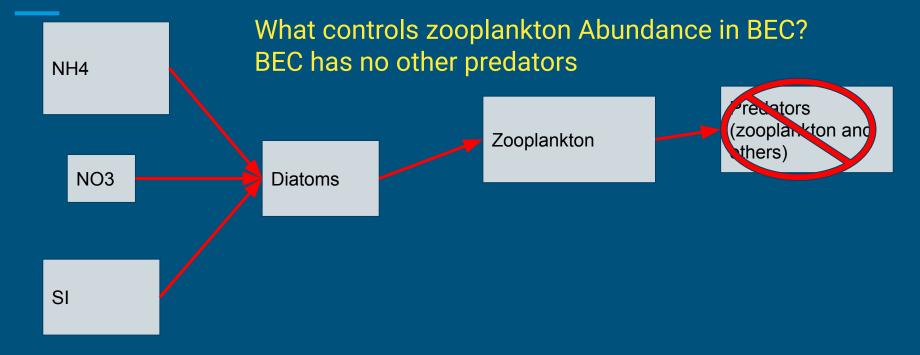
The BEC Paradigm: How to Address this Issue?

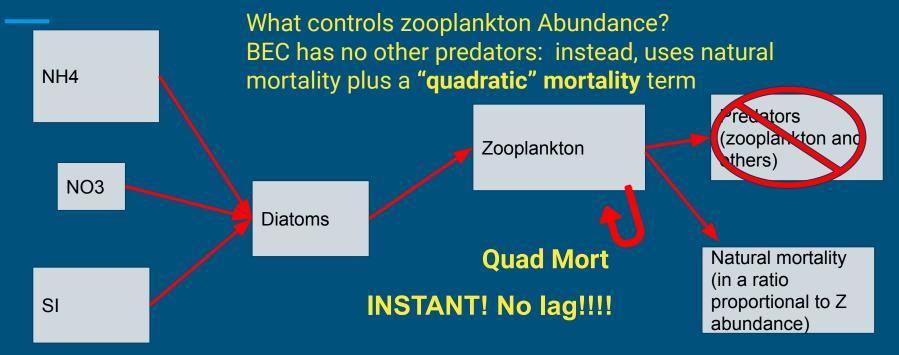
Reparameterize the nitrogen fixer group to a dinoflagellate group $\rightarrow N_2$ fixers are relatively unimportant in the CCS



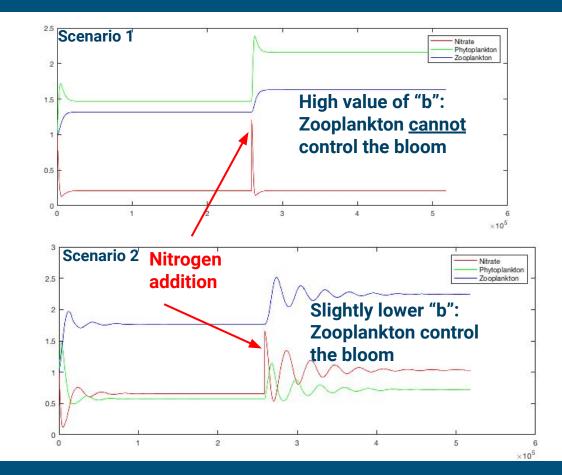

NO₃ from upwelling


Caron et al. 2017: Estuarine, Coastal and Shelf Science, Volume 186, Part B


3 week diversion at OC sanitation in Sept.-Oct 2012 (non upwelling season): chl levels similar or less than peak spring bloom. Diatoms -> Dinos -> BACTERIA!?!



"Surprisingly, the overall increase in phytoplankton biomass during the 3-week diversion was minor, although shifts in taxonomic composition did occur" -Caron et al.



Quadratic mortality assumes zooplankton "feed" on themselves, but do not grow

Quadratic Mortality:

- Death = $Z^*a + b^*Z^2$
- In the second scenario (lower panel), a very short bloom is eventually controlled by the zooplankton, implying less total phytoplankton biomass accumulation, and resulting sinking and changes in O_2 and pH at depth.
- "b" was lowered by about 20% in this comparison

Unintended Consequences of Quadratic Mortality in NPZ Models If it's so bad, why do scientists use this equation in the first place?

- 1. <u>Edwards and Yool, 2000</u> "The role of higher predation in plankton population models" describes the problems and caveats of this equation. This is a well-known issue to ecosystem modelers.
- 2. It provides model stability
- 3. It provides a shortcut for density-dependent mortality of the zooplankton when you have not included a higher trophic level to graze on them
 - a. Works ok when there aren't strong perturbations to the underlying nutrient inputs, (e.g. see analysis in Friedrichs et al., shows a direct example of this for BEC)

Recommendation: Conduct a broader sensitivity analysis of the impact of "b" on the model results, *particularly in seasonal changes*

Overview of concerns:

- 1. Model should incorporate dinoflagellates
- 2. More work on model sensitivity to grazing formulation needs to be conducted
- 3. Results of sensitivity analysis need not be published, but needs to be made available; both the methods and results (tables?)
- 4. Clear listing of (all) the current model equations behind recent papers
 - a. Is there still depth limited grazing?
 - b. What is the T_{ref} function for temperature adjustment? (P growth?)
 - c. List the "tweaks" used to turn an HNLC model into a coastal eutrophic model

Some Notes on Additional BEC Sensitivity Analyses:

- 1. No need to look at all 90 parameters, just the top ~10 previously identified as most influential on model outcome: growth and grazing rate control parameters, sinking, etc.
- 2. No need for multi-year runs, could be a single year
- 3. Could be just parts of the model, perhaps not even coupled to the physics in some cases
- 4. Could start with a "0D" or "1D" model run
- 5. For previous and any new runs, look at how different outputs are affected:
 - a. NPP, not just yearly, but need to look at seasonal and even daily of base vs adjusted runs

Ex: a 10% difference in annual PP may not seem like much, but if it's 40% higher during spring and 30% lower during summer, this IS a big difference!

- b. Should look at amounts of relative contributions from different "boxes" e.g. the relative NPZ biomass contributions.
- c. Should look at O₂ and other parameters, also on seasonal/daily timescale
- d. Should also look at "achieved" or "measured" rates (the rate you'd calculate after all adjustments due to temperature etc.) for phyto/zooplankton growth/death
- e. Suggested amounts to adjust are ±10 and ±25% within "real-life" range, if known.

References of Interest

The problems with quadratic grazing: Edwards, AM and Yool, A. 2000. "The role of higher predation in plankton population models". <u>J. Plankton Res., 22 (6)</u>.

Follow up recommendations: Rohr, T et al. 2022. "Recommendations for the Formulation of Grazing in Marine Biogeochemical and Ecosystem Models." <u>Progress in Oceanography 208: 102878</u>.

The importance of dinoflagellates in the CCS: Venrick, EL. 2015. "Phytoplankton Species in the California Current System off Southern California: The Spatial Dimensions". <u>CalCOFI Rep., Vol 56: 17</u>.

BEC (aka "Model 24") led to unrealistic blooms when applied to a eutrophic system: Friedrichs, MAM. et al. 2009. "Assessing the Uncertainties of Model Estimates of Primary Productivity in the Tropical Pacific Ocean." Journal of Marine Systems 76 (1–2): 113–33.

Original model with identical parameters to current BEC: Moore, JK et al 2002. "An Intermediate Complexity Marine Ecosystem Model for the Global Domain." Deep Sea Research Part II: Topical Studies in Oceanography, The US JGOFS Synthesis and Modeling Project: Phase 1, <u>49 (1): 403–62</u>.

Current BEC model with most recently published parameters/equations: Deutsch et al. 2021. "Biogeochemical Variability in the California Current System." Progress in Oceanography 196: 102565.

Example of nutrient addition due to outfall overflow which led to no bloom: Caron, DA et al. 2017. "Response of Phytoplankton and Bacterial Biomass during a Wastewater Effluent Diversion into Nearshore Coastal Waters." <u>Estuarine, Coastal and Shelf</u> <u>Science 186: 223–36</u>.

Example of a PUBLISHED sensitivity analysis: Yoshie, N et al. 2007. "Parameter sensitivity study of the NEMURO lower trophic level marine ecosystem model." <u>Ecological Modelling 202, no. 1-2: 26-37</u>.

Additional References

Examples of Sensitivity Analyses in NPZ models:

Fasham, MJR et al. 1990. "A Nitrogen-Based Model of Plankton Dynamics in the Oceanic Mixed Layer." <u>Journal</u> <u>of Marine Research 48 (3): 591–639</u>.

Fennel, K et al. 2001. "Testing a Marine Ecosystem Model: Sensitivity Analysis and Parameter Optimization." Journal of Marine Systems 28 (1): 45–63.

Mateus, MD and G Franz. 2015. "Sensitivity Analysis in a Complex Marine Ecological Model." <u>Water 7 (5):</u> 2060–81.

Schartau, M et al 2017. "Reviews and Syntheses: Parameter Identification in Marine Planktonic Ecosystem Modelling." <u>Biogeosciences 14 (6): 1647–1701</u>.

Thank you

Auxillary slides

BEC Parameterization Comparisons: 2002 HNLC vs 2021 CCS

Large Phytoplankton growth rate is the same in both models.

2002 HNLC

J.K. Moore et al. / Deep-Sea Research II 49 (2002) 403-462 443							
Appendix A.	Appendix A. Model notation, parameter values, and equations						
Biological pa	Biological parameters						
PCref	3.0*+	maximum phytoplankton C-specific growth rate (per day) (GD98))				
PCref_dz	0.4*	maximum diazotroph C-specific growth rate (per day)	_				
z_umax	3.24*	maximum zooplankton growth rate when grazing small phytoplankt	on				
lz_umax	2.16*	maximum zooplankton growth rate when grazing diatoms					
d_umax	1.40*	maximum zooplankton growth rate when grazing large detritus					
dz_umax	0.2*	maximum zooplankton growth rate when grazing diazotrophs					
sp_mort	0.1	small phytoplankton non-grazing mortality (per day)					
sp_mort2	2.0	small phytoplankton quadratic mortality/aggregation rate coeff.					
In mort	0.1	laree nhytonlankton non-grazing mortality (ner day)					

2021 CCS

713 5.2 Ecosystem parameters

Parameters	Description	Values	Units	
Model grid				
$\Delta z \ { m k}_ ho$	Model layer thickness Index of model vertical level at tracer points	variable 1-60	meters no units	
Carbon				
PC^{sp}_{ref}	max phyto C-specific growth rate at Tref (GD98) for small phytoplankton	3.0	1/d	
PC_{ref}^{diat}	max phyto C-specific growth rate at Tref (GD98) for diatoms	3.0	1/d	

Some Notes on Additional BEC Sensitivity Analyses:

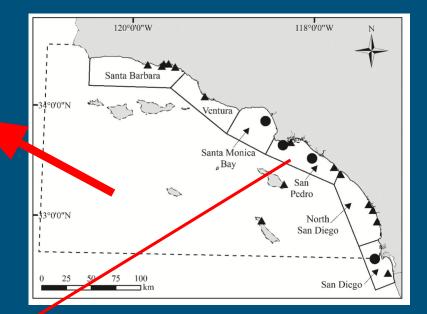
Table 1. BEC parameters that are candidates for sensitivity analyses

Priority Ranking	Parameter to Test	Parameter Description	Paramete r	Parameter Value	Parameter Units
1	Maximum growth rate of large phytoplankton group (i.e., diatoms)	max phyto C- specific growth rate at Tref (GD98) for diatoms	PC_{ref}^{diat}	3	/day
2	Grazer population size	zooplankton quadratic mortality	λ_{zoo}^{mort}	0.42	/ mmol C m³ day
3	Zooplankton maximum grazing rates on large phytoplankton (diatoms)	maximum grazing loss for diatoms	J ^{g,max} J _{diat}	1.95	/day
4	Grazer natural mortality rate	Zooplankton linear mortality	λ_{zoo}^{mort}	0.08	/day
5	Limits grazing once grazers reach a certain population size	grazing coefficient, used in density dependent grazing modification	β_z^{grz}	1.05	C /m³
6	Carbon fluxes of large phytoplankton from the photic zone, i.e., remineralization rate of dead diatoms	Maximum aggregation rate for diatoms	T ^{agg,max} diat	0.75	/day
7	Small phytoplankton growth	max phyto C- specific growth rate at Tref (GD98) for small phytoplankton	PC ^{sp} _{ref}	3	/day
8	Zooplankton maximum grazing rates on small phytoplankton	maximum grazing loss for small phytoplankton	J ^{g,max} Jsp	2.5	/day
9	Carbon fluxes of small phytoplankton from the photic zone, i.e., remineralization rate of dead small phytoplankton	Maximum aggregation rate for small phytoplankton	T ^{agg,max}	0.75	/day

Relative nutrient input amounts: Howard et al. 2014

Table 3. Annual nitrogen loads for each nutrient source and constituent. All loads are 10^6 kg N yr⁻¹. The form of nitrogen expressed as a percentage of total nitrogen for each source is given in parentheses.

	Total N	Nitrate + nitrite	Ammonium	Organic N
Upwelling	750	740 (98.7)	10 (1.3)	na*
Effluent	48	3.4 (7.0)	44 (92.0)	0.5 (1.0)
Riverine runoff [†]	10	3.5 (34.0)	0.6 (6.0)	6.2 (60.0)


If you use the whole region, ratio is 20:1 upwelling:anthro

Its only when you use arbitrarily small regions that you get ratios more like 2:1

Table 5. Annual total nitrogen flux for each subregion (10^2 kg N km⁻² yr⁻¹).

Source	Santa Barbara	Ventura	Santa Monica Bay	San Pedro	North San Diego	San Diego
Upwelling	-210	-1071	102	238	367	24
Effluent	1.6	5.1	99	121	14	74
Riverine runoff*	0.7	4.1	1.4	12	6	60
Atmospheric deposition	4.3	4.3	8.7	8.7	4.7	4.7
Total N	-203	-1057	211	380	392	163

* Data for January through October 2010.

These arbitrarily small subregions do not adequately capture the residence times/mixing rates of this region (~1.5 d)